

Total No. of Printed Pages : 21
(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU
$\qquad$
Time: $11 / 4$ Hours
Roll No. (in figures) $\qquad$ Max. Marks : 100

Total Questions : 100

Name $\qquad$ Date of Birth $\qquad$
Father's Name $\qquad$ Mother's Name $\qquad$
Date of Examination $\qquad$
(Signature of the Candidate)

## CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

## 1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the $A, B, C \& D$ code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct. and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)

1. Which of the following sets is an empty set ?
(1) The set having zero as its only element
(2) $\{x: x+3=3\}$
(3) $\left\{y: y^{3}=27, y=2\right\}$
(4) None of these
2. If $A$ and $B$ are two disjoint sets, then $n(A \cup B)$ is equal to :
(1) $n(A)+n(B)$
(2) $n(A)+n(B)-n(A \cap B)$
(3) $n(A)+n(B)+n(A \cap B)$
(4) $n(A) \cdot n(B)$
3. If $n$ elements are common to A and B , then number of elements common in $A \times B$ and $B \times A$ is :
(1) $n \cdot$
(2) $2 n$
(3) $n^{3}$
(4) $n^{2}$
4. The function $f: R \rightarrow R$ is. defined by $f(x)=\cos ^{2} x+\sin ^{4} x$ then $f(R)$ equals :
(1) $\left[\frac{3}{4}, 1\right)$
(2) $[3 / 4,1]$
(3) $\left[\frac{3}{4}, 1\right]$
(4) $\left(\frac{3}{4}, 1\right)$.
5. If $\tan x=a / b$, then $b \cos 2 x+a \sin 2 x$ is equal to :
(1) $a$
(2) $b$
(3) $a / b$
(4) $b / a$

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)
P. T. O.
6. If $x$ is an acute angle and $\tan x=1 / \sqrt{7}$, then the value of $\frac{\operatorname{cosec}^{2} x-\sec ^{2} x}{\operatorname{cosec}^{2} x+\sec ^{2} x}$ is :
(1) $3 / 4$
(2) $1 / 2$
(3) 2
(4) $5 / 4$
7. The trigonometric function $\cos x$ is increasing in quadrant :
(1) I and II
(2) II and III
(3) III and IV
(4) I and IV
8. The complex number, which when multiplied by $2+5 i$ gives $3-7 i$, is :
(1) $-1+i$
(2) $-1-i$
(3) $1-i$
(4) $1+i$
9. The value of $\sin 30^{\circ}+\cos 30^{\circ}$ in polar form :
(1) $\cos \pi / 6+i \sin \pi / 6$
(2) $\cos \pi / 6-i \sin \pi / 6$
(3) $\cos \pi / 3-i \sin \pi / 3$
(4) None of these
10. Solution of the quadratic equation $x^{2}-7 i x-12=0$ are :
(1) $3 i, 4 i$
(2) $-3 i, 4 i$
(3) $-3 i,-4 i$
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)
11. If $x$ and $b$ are real number, $b>0$ and $|x|>b$, then :
(1) $x \in(-b, \infty)$
(2) $x \in(-\infty, b)$
(3) $x \in(-b, b)$
(4) $x \in(-\infty,-b) \cup(b, \infty)$
12. Which of the points lies in the half-plane $\frac{x}{2}+\frac{y}{3}-1 \geq 0$ ?
(1) $(0,1)$
(2) $(1,5)$
(3) $(-3,-4)$
(4) None of these
13. The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even.place is :
(1) 1440
(2) 144
(3) 7 !
(4) None of theṣe
14. If ${ }^{n} P_{r}=840,{ }^{n} C_{r}=35$, find the value of $r$ :
(1) 8
(2) 6
(3) 4
(4) None of these
15. In how many ways can 5 boys and 5 girls be seated at a round table, so that no two girls are seated together?
(1) 2880
(2) 2680
(3) 1860
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)
P. T. O.
16. Find the middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$ :
(1) 252
(2) $250 x^{2}$
(3) $248 x^{-2}$
(4) None of these
17. Find the co-efficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$ :
(1) 890
(2) 990
(3) 690
(4) None of these
18. The first and last term of an A.P. are 1 and 11. If the sum of its terms is 36 , then the number of terms will be :
(1) 8
(2) 7
(3) 6
(4) None of these
19. Which term of the sequence $8-6 i, 7-4 i, 6-2 i, \ldots \ldots \ldots$ is purely imaginary?
(1) 4
(2) 7
(3) 9
(4) None of these
20. The third term of G.P. is 4 . The product of its first five term is :
(1) $4^{2}$
(2) $4^{3}$
(3) $4^{4}$
(4) $4^{5}$

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)
21. The minimum value of the expression $3^{x}+3^{1-x}, x \in R$ is given by:
(1) $\geq 2 \sqrt{3}$
(2) $\leq 2 \sqrt{3}$
(3) $4 \sqrt{3}$
(4) None of these
22. If the vertices of a triangle are $(-4,6),(2,-2)$ and $(2,5)$, then its centroid is :
(1) $(3,0)$
(2) $(-3,0)$
(3) $(0,-3)$
(4) $(0,3)$
23. The distance between the lines $5 x+3 y-7=0$ and $15 x+9 y+14=0$ is :
(1) $\frac{35}{\sqrt{34}}$
(2) $\frac{1}{3 \sqrt{34}}$
(3) $\frac{35}{3 \sqrt{34}}$
(4) None of these
24. If the lines $a x+2 y+1=0, b x+3 y+1=0$ and $c x+4 y+1=0$ are concurrent, then relation between $a, b, c$ is given by :
(1) $a+b=c$
(2) $a+c=2 b$
(3) $a+c=b$
(4) None of these
25. The line which cuts off equal intercept from the axes and pass through the point $(1,-2)$ is :
(1) $x+y+1=0$
(2) $x-y+5=0$
(3) $x+3 y=0$
(4) None of these
26. The equation of circle which touches the $y$-axis at origin and whose radius is 3 units.
(1) $x^{2}+y^{2}=9$
(2) $x^{2}+y^{2}=0$
(3) $x^{2}+y^{2} \pm 6 x=0$
(4) None of these
27. If the focus of a parabola is $(-2,1)$ and the directrix has the equation $x+y=3$, then its vertex :
(1) $(0,3)$
(2) $(-1,1 / 2)$
$(3)(2,-1)$
(4) $(-1,2)$
28. Equation of the hyperbola whose vertices are $( \pm 3,0)$ and foci at $( \pm 5,0)$ is :
(1) $9 x^{2}-16 y^{2}=144$
(2) $16 x^{2}-9 y^{2}=144$
(3) $25 x^{2}-9 y^{2}=225$
(4) None of these
29. The length of the perpendicular drawn from the point $P(a, b, c)$ on $z$-axis is :
(1) $\sqrt{a^{2}+b^{2}}$
(2) $\sqrt{b+c^{2}}$
(3) $\sqrt{a^{2}+c^{2}}$
(4) $\sqrt{a^{2}+b^{2}+c^{2}}$
30. $A$ is the foot of the perpendicular drawn from a point $P(3,4,5)$ on the $x z$-plane. The co-ordinates of point $A$ are :
(1) $(3,0,0)$
(2) $(0,4,5)$
(3) $(3,0,5)$
(4) None of these

## UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)

31. $\lim _{x \rightarrow 1}[x-1]$, where $[$.$] is a greatest integer function, is equal to :$
(1) 1
(2) 2
(3) 0
(4) Does not exist
32. The value of $\lim _{x \rightarrow 5} \frac{e^{x}-e^{5}}{x-5}$ is equal to :
(1) 5
(2) $e$
(3) $e^{5}$
(4) None of these
33. If $f(x)=1-x+x^{2}-x^{3}+$ $\qquad$ $-x^{99}+x^{100}$, then the value of $f^{\prime}(1)$ is :
(1) 50
(2) 25
(3) 0
(4) None of these
34. The mean deviation of the data $3,10,10,4,7,10,5$ from the mean is :
(1) 2
(2) 2.57
(3) 3
(4) None of these
35. The standard deviation for first 10 natural numbers is:
(1) 2.87
(2) 2.97
(3) 3.87
(4) None of these
P. T. O.
36. The mean of first $n$ terms of an A.P. whose first term is $a$ and common difference is $d$.
(1) $a+(n-1) d$
(2) $a+n d$
(3) $a+(n-1) \frac{d}{2}$
(4) None of these
37. In a leap year the probability of having 53 Sunday or 53 Monday is:
(1) $2 / 7$
(2) $3 / 7$
(3) $4 / 7$
(4) None of these
38. Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is :
(1) $\frac{1}{3}$
(2) $\frac{1}{6}$
(3) $\frac{2}{7}$
(4) None of these
39. A card is drawn at random from a well shuffled pack of 52 cards. The probability of getting a two of heart or a two of diamond is :
(1) $1 / 52$
(2) $3 / 52$
(3) $4 / 52$
(4) $1 / 26$
40. If $R$ is a relation from a set $A$ to a set $B$ and $S$ is a relation from $B$ to a set $C$, then the relation $S o R$ :
(1) is from $A$ to $C$
(2) is from $C$ to $A$
(3) does not exist
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)
41. Set $A$ has 3 elements and set $B$ has 4 elements. The number of injections that can be defined from $\Lambda$ to $B$ is :
(1) 144
(2) 12
(3) 24
(4) None of these
42. Let $S$ be a finite set containing $n$ elements, then the total number of binary operation of $S$ is :
(1) $n^{n}$
(2) $2^{n}$
(3) $n^{2}$
(4) None of these
43. The least values of $\left(\sin ^{-1} x\right)^{2}+\cos ^{-1} x^{2}$ is :
(l) $\pi^{2} / 16$
(2) $\pi^{2} / 8$
(3) $\pi^{2} / 4$
(4) None of these
44. If $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$, the value of $x$ is :
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{3}$
(3) $2 \sqrt{3}$
(4) None of these
45. For any $2 \times 2$ matrix $A$, if $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then $|A|$ is equal to :
(1) 0
(2) 10
(3) 20
(4) None of these

## UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)

P. T. O.
46. The diagonal elements of a skew-hermitian matrix are :
(1) Equal to one
(2) Real
(3) Purely imaginary or zero
(4) None of these
47. Every real symmetric metric is:
(1) Hermitian
(2) Skew-hermitian
(3) Skew-symmetric
(4) None of these
48. A and B be two square matrices and if their inverse exists than $(A B)^{-1}$ is equal to :
(1) $A^{-1} B^{-1}$
(2) $A B^{-1}$
(3) $A^{-1} B$
(4) $B^{-1} A^{-1}$
49. If the system of equation $x+a y=0, a z+y=0, a x+z=0$ has infinite solutions, than the value of $a$ is :
(1) -1
(2) 1
(3) 0
(4) None of these
50. $A$ and $B$ are square matrices of order 3 each, $|A|=2$ and $|B|=3$, the value of $|3 A B|$ is :
(1) 18
(2) 54
(3) 108
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)
51. If $\left|\begin{array}{lll}2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1\end{array}\right|+3=0$, then the value of $x$ is :
(1) 9
(2) 4
(3) 1
(4) -1
52. If $f(x)=x^{2}-3 x+1$ and $f(2 \alpha)=2 f(\alpha)$, then $\alpha$ is equal to :
(1) $\frac{1}{\sqrt{2}}$
(2) $\frac{1}{\sqrt{3}}$
(3) $\frac{1}{\sqrt{5}}$
(4) None of these
53. The range of the function $\sin \left(\sin ^{-1} x+\cos ^{-1} x\right),|x| \leq 1$ is :
(1) $[-1,1]$
(2) $(-1,1)$
(3) $\{0\}$
(4) $\{1\}$
54. The domain of the function $f(x)=\cos ^{-1}[x]$ is :
(1) $(-1,2)$
(2) $(-2,1)$
(3) $[-1,2)$
(4) $[1,2]$
55. If $y=\sin ^{-1} x$ and $z=\cos ^{-1} \sqrt{1-x^{2}}$, then $\frac{d y}{d z}$ is equal to :
(1) $\frac{1}{\sqrt{1-x^{2}}}$
(2) $\cos ^{-1} x$
(3) 1
(4) None of these
56. Derivative of $x^{2 x}$ w.r.t. $x$ is:
(1) $x^{2 x-1}$
(2) $2 x^{2 x} \log x$
(3) $2 x^{2 x}(1-\log x)$
(4) $2 x^{2 x}(1+\log x)$
57. $f(x)=3 x^{3}-x^{2}$, then $f(x)$ is increasing in the interval :
(1) $\left(\frac{1}{3}, \infty\right)$
(2) $\left(-\infty, \frac{1}{3}\right)$
(3) $\left(0, \frac{1}{3}\right)$
(4) None of these
58. If $x+y=8$, then the maximum value of $x y$ is :
(1) 12
(2) 16
(3) 20
(4) None of these
59. The minimum value of $x+\cos x$ in $[0, \pi)$ is :
(1) $\pi$
(2) 1
(3) $\pi / 2$
(4) None of these
60. $\int_{0}^{\pi / 2} \cos ^{6} x d x$ is equal to :
(1) $3 \pi / 32$
(2) $4 \pi / 32$
(3) $5 \pi / 32$
(4) None of these
61. $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$ is equal to :
(1) $\pi^{2} / 4$
(2) $\pi^{2} / 32$
(3) 1
(4) None of these
62. $\int_{0}^{\pi} \cos ^{101} x d x$ is equal to :
(1) $\pi / 4$
(2) $1 / 102$
(3) $(\pi / 3)^{101}$
(4) 0
63. $\int_{0}^{1 / 2}|\sin \pi x| d x$ is equal to :
(1) 0
(2) $\pi$
(3) $-\pi$
(4) $1 / \pi$
64. The value of $\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x$ is :
(1) $e^{x} f(x)+c$
(2) $e^{x}+f(x)+c$
(3) $2 e^{x} f(x)+c$
(4) None of these
65. The area of region bounded by curve $x+2 y+3$, lines $y=1, y=-1$ and $y$-axis is :
(1) 4 square units
(2) $3 / 2$ square units
(3) 6 square units
(4) None of these
66. If $\int_{0}^{a} \frac{d x}{1+4 x^{2}}=\pi / 8$, then value of $a$ is :
(1) $1 / 2$
(2) $1 / 4$
(3) $1 / 8$
(4) None of these
67. The value of $\int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x$ is :
(1) $\pi / 4$
(2) $\pi / 2$
(3) 0
(4) None of these
68. The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{x}$ is :
(1) $x / e^{x}$
(2) $e^{x} / x$
(3) $x e^{x}$
(4) None of these
69. The sum of the order and degree of the differential equation $1+\left(\frac{d y}{d x}\right)^{4}=7\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$ is :
(1) 7
(2) 5
(3) 3
(4) None of these
70. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is :
(1) $e^{x+y}+c=0$
(2) $e^{x}+e^{y}=c$
(3) $e^{x}+e^{-y}=c$
(4) None of these
71. The slope at any point of a curve $y=f(x)$ is given by $\frac{d y}{d x}=3 x^{2}$ and it passes through $(-1,1)$. The equation of the curve is :
(1) $x^{3}+2$
(2) $-x^{3}-2$
(3) $3 x^{3}+4$
(4) None of these
72. The order of differential equation whose solution is $y=A \cos x+B \sin x+C e^{-x}$ is :
(1) 1
(2) 2
(3) 3
(4) None of these
73. The probability of having at least one tail in 4 throws with a coin is :
(1) $\frac{1}{16}$
(2) $\frac{15}{16}$
(3) 1
(4) None of these
74. If for any two events $A$ and $B, P(A)=\frac{4}{5}$ and $P(A \cap B)=\frac{7}{10}$, then $P(B / A)$ is equal to :
(1) $\frac{1}{10}$
(2) $\frac{1}{8}$
(3) $\frac{7}{8}$
(4) None of these
75. If three dice are thrown simultaneously, then the probability of getting a score of 5 is :
(1) $1 / 6$
(2) $1 / 72$
(3) $5 / 216$
(4) $1 / 36$
76. Three vertices out of six of a hexagon are chosen at random. The probability that the triangle is equilateral triangle is :
(1) $1 / 10$
(2) $2 / 5$
(3) $3 / 2$
(4) $4 / 5$
77. The probability that a man will live 10 more years is $1 / 4$ and the probability that his wife will live 10 more years is $1 / 3$. Then the probability that neither will be alive in 10 years is :
(1) $5 / 12$
(2) $1 / 2$
(3) $7 / 12$
(4) $11 / 12$
78. If $|\vec{a} \times \vec{b}|=|\vec{a} \cdot \vec{b}|$, then the angle between $\vec{a}$ and $\vec{b}$ is :
(1) $\pi / 2$
(2) $\pi / 4$
(3) $2 \pi / 3$
(4) None of these
79. Let $\vec{a}$ and $\vec{b}$ be the two unit vectors such that angle between them is $60^{\circ}$, then $|\vec{a}-\vec{b}|$ is equal to :
(1) $\sqrt{5}$
(2) $\sqrt{3}$
(3) 0
(4) 1
80. Which of the following is a true statement ?
(1) $(\vec{a} \times \vec{b}) \times \vec{c}$ is coplanar with $\vec{c}$
(2) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{a}$
(3) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{b}$
(4) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{c}$
81. The volume of the parallelopiped whose edges are represented by the vectors $\hat{i}+\hat{j}$, $\hat{j}+\hat{k}$ and $\hat{i}+\hat{k}$ is :
(1) 2
(3) $\sqrt{2}$
(2) 0
(4) None of these
82. The value of $[\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}]$ where $|\vec{a}|=1,|\vec{b}|=2$ and $|\vec{c}|=3$ is :
(1) 6
(2) 3
(3) 1
(4) 0
83. The minimum value of $P=6 x+16 y$ subject to constraints $x \leq 40, y \geq 20$ and $x, y \geq 0$ :
(1) 240
(2) 320
(3) 560
(4) None of these
84. Let $z=p x+q y$, where $p, q>0$ be the objective function. Find the condition on $p$ and $q$ so that the maximum value of $z$ occurs at $B(10,14)$ and $C(12,12)$ :
(1) $p>q$
(2) $p=q$
(3) $p<q$
(4) None of these
85. Which of the terms is not used in a linear programming problem?
(1) Slack variables
(2) Objective function
(3) Concave region
(4) Feasible region
86. The maximum value of $P=8 x+3 y$ subject to the constraints $x+y \leq 3,4 x+y \leq 6$, $x \geq 0, y \geq 0$ is :
(1) 6
(2) 12
(3) 14
(4) None of these
87. The co-ordinates of foot of perpendicular drawn from point $(1,3,9)$ on $x$-axis are :
(1) $(1,0,0)$
(2) $(0,3,0)$
(3) $(0,3,9)$
(4) $(0,0,9)$
88. The points $(1,1,0),(0,1,1),(1,0,1)$ and $\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ are :
(1) Non-coplanar
(2) Co-planar
(3) The vertices of a parallelogram
(4) None of these
89. The ratio in which the line joining $(2,4,5),(3,5,-4)$ is divided by the $y z$-plane is :
(1) $2: 3$
(2) $3: 2$
(3) $4:-3$
(4) $-2: 3$
90. The direction ratio of a normal to the plane through $(1,0,0),(0,1,0)$, which makes an angle of $\pi / 4$ with the plane $x+y=3$ are :
(1) $\langle\sqrt{2}, 1,1\rangle$
(2) $\langle 1, \sqrt{2}, 1\rangle$
(3) $(1,1, \sqrt{2})$
(4) $<1,1,2>$
91. The centre of sphere passing through four points $(0,0,0),(0,2,0),(1,0,0)$ and $(0,0,4)$ is :
(1) $\left(\frac{1}{2}, 1,2\right)$
(2) $\left(-\frac{1}{2}, 1,2\right)$
(3) $\left(\frac{1}{2}, 1,-2\right)$
(4) $\left(1, \frac{1}{2}, 2\right)$
92. The point equidistant from the points $(0,0,0),(1,0,0),(0,2,0)$ and $(0,0,3)$ is :
(1) $(1,2,3)$
(2) $\left(\frac{1}{2}, 1,3 / 2\right)$
(3) $\left(-\frac{1}{2},-1,-3 / 2\right)$
(4) None of these
93. If $\int f(x) d x=g(x)$, then $\int f(x) g(x) d x$ is equal to :
(1) $\log g(x)$
(2) $\frac{1}{2}(g(x))^{2}$
(3) $\frac{1}{2}(f(x))^{2}$
(4) None of these
94. $\int_{-2}^{2}[x] d x$ is equal to :
(1) 2
(2) 0
(3) -2
(4) None of these
95. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$ is equal to :
(1) $\frac{1}{6}$
(2) 0
(3) $-\frac{1}{3}$
(4) $-1 / 6$
96. Every continuous function is :
(1) Increasing
(2) Decreasing
(3) Differentiable
(4) Not differentiable
97. In order that the function $f(x)=(x+1)^{\cot x}$ is continuous at $x=0, f(0)$ must be defined as :
(1) $f(0)=0$
(2) $f(0)=1 / e$
(3) $f(0)=e$
(4) None of these
98. Area of the quadrilateral whose vertices are $(2,3),(3,4),(4,5),(5,6)$ is :
(1) 0
(2) 4
(3) 6
(4) None of these
99. If $A$ and $B$ are symmetric matrices of order $n(A \neq B)$, then :
(1) $A+B$ is a zero matrix
(2) $(A+B)$ is a diagonal matrix
(3) $A+B$ is a skew-symmetric
(4) $A+B$ is symmetric
100. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$, then $A^{2}$ is equal to :
(1) $-A$
(2) $A$
(3) Null matrix
(4) Unit matrix

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(A)

Opened at $11: 40 \mathrm{AM}$ for uplaciling on ter unlucrairy website and Colet P P

Sr. No.

Time: $11 / 4$ Hours
Roll No. (in figures) $\qquad$ Max. Marks: 100 Total Questions

100

Name $\qquad$ Date of Birth $\qquad$
Father's Name $\qquad$ Mother's Name $\qquad$
Date of Examination $\qquad$
(Signature of the Candidate)
(Signature of the Invigilator)

## CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

## 1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the $A, B, C \& D$ code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(B)
9. The volume of the parallelopiped whose edges are represented by the vectors $\hat{i}+\hat{j}$, $\hat{j}+\hat{k}$ and $\hat{i}+\hat{k}$ is :
(1) 2
(2) 0
(3) $\sqrt{2}$
(4) None of these
10. The value of $[\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}]$ where $|\vec{a}|=1,|\vec{b}|=2$ and $|\vec{c}|=3$ is :
(1) 6
(2) 3
(3) 1
(4) 0
11. The minimum value of $P=6 x+16 y$ subject to constraints $x \leq 40, y \geq 20$ and $x, y \geq 0$ :
(1) 240
(2) 320
(3) 560
(4) None of these
12. Let $z=p x+q y$, where $p, q>0$ be the objective function. Find the condition on $p$ and $q$ so that the maximum value of $z$ occurs at $B(10,14)$ and $C(12,12)$ :
(1) $p>q$
(2) $p=q$
(3) $p<q$
(4) None of these
13. Which of the terms is not used in a linear programming problem?
(1) Slack variables
(2) Objective function
(3) Concave region
(4) Feasible region
14. The maximum value of $P=8 x+3 y$ subject to the constraints $x+y \leq 3,4 x+y \leq 6$, $x \geq 0, y \geq 0$ is :
(1) 6
(2) 12
(3) 14
(4) None of these
15. The co-ordinates of foot of perpendicular drawn from point $(1,3,9)$ on $x$-axis are :
(1) $(1,0,0)$
(2) $(0,3,0)$
(3) $(0,3,9)$
(4) $(0,0,9)$
16. The points $(1,1,0),(0,1,1),(1,0,1)$ and $\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ are :
(1) Non-coplanar
(2) Co-planar
(3) The vertices of a parallelogram
(4) None of these
17. The ratio in which the line joining $(2,4,5),(3,5,-4)$ is divided by the $y z$-plane is :
(1) $2: 3$
(2) $3: 2$
(3) $4:-3$
(4) $-2: 3$
18. The direction ratio of a normal to the plane through $(1,0,0),(0,1,0)$, which makes an angle of $\pi / 4$ with the plane $x+y=3$ are :
(1) $\langle\sqrt{2}, 1,1\rangle$
(2) $\langle 1, \sqrt{2}, 1\rangle$
(3) $(1,1, \sqrt{2})$
(4) $\langle 1,1,2\rangle$

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(B)
11. The slope at any point of a curve $y=f(x)$ is given by $\frac{d y}{d x}=3 x^{2}$ and it passes through $(-1,1)$. The equation of the curve is :
(1) $x^{3}+2$
(2) $-x^{3}-2$
(3) $3 x^{3}+4$
(4) None of these
12. The order of differential equation whose solution is $y=A \cos x+B \sin x+C e^{-x}$ is :
(1) 1
(2) 2
(3) 3
(4) None of these
13. The probability of having at least one tail in 4 throws with a coin is:
(1) $\frac{1}{16}$
(2) $\frac{15}{16}$
(3) 1
(4) None of these
14. If for any two events $A$ and $B, P(A)=\frac{4}{5}$ and $P(A \cap B)=\frac{7}{10}$, then $P(B / A)$ is equal to :
(1) $\frac{1}{10}$
(2) $\frac{1}{8}$
(3) $\frac{7}{8}$
(4) None of these
15. If three dice are thrown simultaneously, then the probability of getting a score of 5 is :
(1) $1 / 6$
(2) $1 / 72$
(3) $5 / 216$
(4) $1 / 36$
16. Three vertices out of six of a hexagon are chosen at random. The probability that the triangle is cquilateral triangle is
(1) $1 / 10$
(2) $2 / 5$
(3) $3 / 2$
(4) $4 / 5$
17. The probability that a man will live 10 more years is $1 / 4$ and the probability that his wife will live 10 more years is $1 / 3$. Then the probability that neither will be alive in 10 years is :
(1) $5 / 12$
(2) $1 / 2$
(3) $7 / 12$
(4) $11 / 12$
18. If $|\vec{a} \times \vec{b}|=|\vec{a} \cdot \vec{b}|$, then the angle between $\vec{a}$ and $\vec{b}$ is:
(1) $\pi / 2$
(2) $\pi / 4$
(3) $2 \pi / 3$
(4) None of these
19. Let $\vec{a}$ and $\vec{b}$ be the two unit vectors such that angle between them is $60^{\circ}$, then $\vec{a}-\vec{b}$ is equal to :
(1) $\sqrt{5}$
(2) $\sqrt{3}$
(3) 0
(4) 1
20. Which of the following is a true statement?
(1) $(\vec{a} \times \vec{b}) \times \vec{c}$ is coplanar with $\vec{c}$
(2) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{a}$
(3) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{b}$
(4) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{c}$
21. The centre of sphere passing through four points $(0,0,0),(0,2,0),(1,0,0)$ and $(0,0,4)$ is :
(1) $\left(\frac{1}{2}, 1,2\right)$
(2) $\left(-\frac{1}{2}, 1,2\right)$
(3) $\left(\frac{1}{2}, 1,-2\right)$
(4) $\left(1, \frac{1}{2}, 2\right)$
22. The point equidistant from the points $(0,0,0),(1,0,0),(0,2,0)$ and $(0,0,3)$ is :
(1) $(1,2,3)$
(2) $\left(\frac{1}{2}, 1,3 / 2\right)$
(3) $\left(-\frac{1}{2},-1,-3 / 2\right)$
(4) None of these
23. If $\int f(x) d x=g(x)$, then $\int f(x) g(x) d x$ is equal to :
(1) $\log g(x)$
(2) $\frac{1}{2}(g(x))^{2}$
(3) $\frac{1}{2}(f(x))^{2}$
(4) None of these
24. $\int_{-2}^{2}[x] d x$ is equal to :
(1) 2
(2) 0
(3) -2
(4) None of these
25. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$ is equal to :
(1) $\frac{1}{6}$
(2) 0
(3) $-\frac{1}{3}$
(4) $-1 / 6$
26. Every continuous function is :
(1) Increasing
(2) Decreasing
(3) Differentiable
(4) Not differentiable
27. In order that the function $f(x)=(x+1)^{\cot x}$ is continuous at $x=0, f(0)$ must be defined
as :
(1) $f(0)=0$
(2) $f(0)=1 / e$
(3) $f(0)=e$
(4) None of these
28. Area of the quadrilateral whose vertices are $(2,3),(3,4),(4,5),(5,6)$ is :
(1) 0
(2) 4
(3) 6
(4) None of these
29. If $A$ and $B$ are symmetric matrices of order $n(A \neq B)$, then :
(1) $A+B$ is a zero matrix
(2) $(A+B)$ is a diagonal matrix
(3) $A+B$ is a skew-symmetric
(4) $A+B$ is symmetric
30. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$, then $A^{2}$ is equal to :
(1) $-A$
(2) $A$
(3) Null matrix
(4) Unit matrix
31. Which of the following sets is an empty set ?
(1) The set having zero as its only element
(2) $\{x: x+3=3\}$
(3) $\left\{y: y^{3}=27, y=2\right\}$
(4) None of these
32. If $A$ and $B$ are two disjoint sets, then $n(A \cup B)$ is equal to :
(1) $n(A)+n(B)$
(2) $n(A)+n(B)-n(A \cap B)$
(3) $n(A)+n(B)+n(A \cap B)$
(4) $n(A) \cdot n(B)$
33. If $n$ elements are common to A and B , then number of elements common in $A \times B$ and $B \times A$ is :
(1) $n$
(2) $2 n$
(3) $n^{3}$
(4) $n^{2}$
34. The function $f: R \rightarrow R$ is defined by $f(x)=\cos ^{2} x+\sin ^{4} x$ then $f(R)$ equals :
(1) $\left[\frac{3}{4}, 1\right)$
(2) $(3 / 4,1]$
(3) $\left[\frac{3}{4}, 1\right]$
(4) $\left(\frac{3}{4}, 1\right)$
35. If $\tan x=a / b$, then $b \cos 2 x+a \sin 2 x$ is equal to :
(1) $a$
(2) $b$
(3) $a / b$
(4) $b / a$
36. If $x$ is an acute angle and $\tan x=1 / \sqrt{7}$, then the value of $\frac{\operatorname{cosec}^{2} x-\sec ^{2} x}{\operatorname{cosec}^{2} x+\sec ^{2} x}$ is :
(1) $3 / 4$
(2) $1 / 2$
(3) 2
(4) $5 / 4$
37. The trigonometric function $\cos x$ is increasing in quadrant :
(1) I and II
(2) II and III
(3) III and IV
(4) I and IV
38. The complex number, which when multiplied by $2+5 i$ gives $3-7 i$, is :
(1) $-1+i$
(2) $-1-i$
(3) $1-i$
(4) $1+i$
39. The value of $\sin 30^{\circ}+\cos 30^{\circ}$ in polar form :
(1) $\cos \pi / 6+i \sin \pi / 6$
(2) $\cos \pi / 6-i \sin \pi / 6$
(3) $\cos \pi / 3-i \sin \pi / 3$
(4) None of these
40. Solution of the quadratic equation $x^{2}-7 i x-12=0$ are :
(1) $3 i, 4 i$
(2) $-3 i, 4 i$
(3) $-3 i,-4 i$
(4) None of these
41. If $\left|\begin{array}{lll}2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1\end{array}\right|+3=0$, then the value of $x$ is :
(1) 9
(2) 4
(3) 1
(4) -1
42. If $f(x)=x^{2}-3 x+1$ and $f(2 \alpha)=2 f(\alpha)$, then $\alpha$ is equal to :
(1) $\frac{1}{\sqrt{2}}$
(2) $\frac{1}{\sqrt{3}}$
(3) $\frac{1}{\sqrt{5}}$
(4) None of these
43. The range of the function $\sin \left(\sin ^{-1} x+\cos ^{-1} x\right),|x| \leq 1$ is :
(1) $[-1,1]$
(2) $(-1,1)$
(3) $\{0\}$
(4) $\{1\}$
44. The domain of the function $f(x)=\cos ^{-1}[x]$ is :
(1) $(-1,2)$
(2) $(-2,1)$
(3) $[-1,2)$
(4) $[1,2]$
45. If $y=\sin ^{-1} x$ and $z=\cos ^{-1} \sqrt{1-x^{2}}$, then $\frac{d y}{d z}$ is equal to :
(1) $\frac{1}{\sqrt{1-x^{2}}}$
(2) $\cos ^{-1} x$
(3) 1
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(B) P. T. O.
46. Derivative of $x^{2 x}$ w.r.t. $x$ is:
(1) $x^{2 x-1}$
(2) $2 x^{2 x} \log x$
(3) $2 x^{2 x}(1-\log x)$
(4) $2 x^{2 x}(1+\log x)$
47. $f(x)=3 x^{3}-x^{2}$, then $f(x)$ is increasing in the interval :
(1) $\left(\frac{1}{3}, \infty\right)$
(2) $\left(-\infty, \frac{1}{3}\right)$
(3) $\left(0, \frac{1}{3}\right)$
(4) None of these
48. If $x+y=8$, then the maximum value of $x y$ is :
(1) 12
(2) 16
(3) 20
(4) None of these
49. The minimum value of $x+\cos x$ in $[0, \pi)$ is :
(1) $\pi$
(2) 1
(3) $\pi / 2$
(4) None of these
50. $\int_{0}^{\pi / 2} \cos ^{6} x d x$ is equal to :
(1) $3 \pi / 32$
(2) $4 \pi / 32$
(3) $5 \pi / 32$
(4) None of these
51. $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$ is equal to :
(1) $\pi^{2} / 4$
(2) $\pi^{2} / 32$
(3) 1
(4) None of these
52. $\int_{0}^{\pi} \cos ^{101} x d x$ is equal to :
(1) $\pi / 4$
(2) $1 / 102$
(3) $(\pi / 3)^{101}$
(4) 0
53. $\int_{0}^{1 / 2}|\sin \pi x| d x$ is equal to :
(1) 0
(2) $\pi$
(3) $-\pi$
(4) $1 / \pi$
54. The value of $\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x$ is :
(1) $e^{x} f(x)+c$
(2) $e^{x}+f(x)+c$
(3) $2 e^{x} f(x)+c$
(4) None of these
55. The area of region bounded by curve $x+2 y+3$, lines $y=1, y=-1$ and $y$-axis is :
(1) 4 square units
(2) $3 / 2$ square units
(3) 6 square units
(4) None of these
56. If $\int_{0}^{a} \frac{d x}{1+4 x^{2}}=\pi / 8$, then value of $a$ is :
(1) $1 / 2$
(2) $1 / 4$
(3) $1 / 8$
(4) None of these
57. The value of $\int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x$ is :
(1) $\pi / 4$
(2) $\pi / 2$
(3) 0
(4) None of these
58. The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{x}$ is :
(1) $x / e^{x}$
(2) $e^{x} / x$
(3) $x e^{x}$
(4) None of these
59. The sum of the order and degree of the differential equation $1+\left(\frac{d y}{d x}\right)^{4}=7\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$ is :
(1) 7
(2) 5
(3) 3
(4) None of these
60. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is :
(1) $e^{x+y}+c=0$
(2) $e^{x}+e^{y}=c$
(3) $e^{x}+e^{-y}=c$
(4) None of these
61. The minimum value of the expression $3^{x}+3^{1-x}, x \in R$ is given by
(1) $\geq 2 \sqrt{3}$
(2) $\leq 2 \sqrt{3}$
(3) $4 \sqrt{3}$
(4) None of these
62. If the vertices of a triangle are $(-4,6),(2,-2)$ and $(2,5)$, then its centroid is
(1) $(3,0)$
(2) $(-3,0)$
(3) $(0,-3)$
(4) $(0,3)$
63. The distance between the lines $5 x+3 y-7=0$ and $15 x+9 y+14=0$ is :
(1) $\frac{35}{\sqrt{34}}$
(2) $\frac{1}{3 \sqrt{34}}$
(3) $\frac{35}{3 \sqrt{34}}$
(4) None of these
64. If the lines $a x+2 y+1=0, b x+3 y+1=0$ and $c x+4 y+1=0$ are concurrent, then relation between $a, b, c$ is given by :
(1) $a+b=c$
(2) $a+c=2 b$
(3) $a+c=b$
(4) None of these
65. The line which cuts off equal intercept from the axes and pass through the point $(1,-2)$ is:
(1) $x+y+1=0$
(2) $x-y+5=0$
(3) $x+3 y=0$
(4) None of these
66. The equation of circle which touches the $y$-axis at origin and whose radius is 3 units.
(1) $x^{2}+y^{2}=9$
(2) $x^{2}+y^{2}=0$
(3) $x^{2}+y^{2} \pm 6 x=0$
(4) None of these
67. If the focus of a parabola is $(-2,1)$ and the directrix has the equation $x+y=3$, then its vertex :
(1) $(0,3)$
(2) $(-1,1 / 2)$
(3) $(2,-1)$
(4) $(-1,2)$
68. Equation of the hyperbola whose vertices are $( \pm 3,0)$ and foci at $( \pm 5,0)$ is :
(1) $9 x^{2}-16 y^{2}=144$
(2) $16 x^{2}-9 y^{2}=144$
(3) $25 x^{2}-9 y^{2}=225$
(4) None of these
69. The length of the perpendicular drawn from the point $P(a, b, c)$ on $z$-axis is :
(1) $\sqrt{a^{2}+b^{2}}$
(2) $\sqrt{b+c^{2}}$
(3) $\sqrt{a^{2}+c^{2}}$
(4) $\sqrt{a^{2}+b^{2}+c^{2}}$
70. $A$ is the foot of the perpendicular drawn from a point $P(3,4,5)$ on the $x z$-plane. The co-ordinates of point $A$ are :
(1) $(3,0,0)$
(2) $(0,4,5)$
(3) $(3,0,5)$
(4) None of these
71. If $x$ and $b$ are real number, $b>0$ and $|x|>b$, then :
(1) $x \in(-b, \infty)$
(2) $x \in(-\infty, b)$
(3) $x \in(-b, b)$
(4) $x \in(-\infty,-b) \cup(b, \infty)$
72. Which of the points lies in the half-plane $\frac{x}{2}+\frac{y}{3}-1 \geq 0$ ?
(1) $(0,1)$
(2) $(1,5)$
(3) $(-3,-4)$
(4) None of these
73. The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is :
(1) 1440
(2) 144
(3) 7 !
(4) None of these
74. If ${ }^{n} P_{r}=840,{ }^{n} C_{r}=35$, find the value of $r$ :
(1) 8
(2) 6
(3) 4
(4) None of these
75. In how many ways can 5 boys and 5 girls be seated at a round table, so that no two girls are seated together ?
(1) 2880
(2) 2680
(3) 1860
(4) None of these
76. Find the middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$ :
(1) 252
(2) $250 x^{2}$
(3) $248 x^{-2}$
(4) None of these
77. Find the co-efficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$ :
(1) 890
(2) 990
(3) 690
(4) None of these
78. The first and last term of an A.P. are 1 and 11. If the sum of its terms is 36 , then the number of terms will be :
(1) 8
(2) 7
(3) 6
(4) None of these
79. Which term of the sequence $8-6 i, 7-4 i, 6-2 i, \ldots \ldots \ldots$ is purely imaginary ?
(1) 4
(2) 7
(3) 9
(4) None of these
80. The third term of G.P. is 4 . The product of its first five term is :
(1) $4^{2}$
(2) $4^{3}$
(3) $4^{4}$
(4) $4^{5}$
81. Set $A$ has 3 elements and set $B$ has 4 elements. The number of injections that can be defined from $\Lambda$ to $B$ is :
(1) 144
(2) 12
(3) 24
(4) None of these
82. Let $S$ be a finite set containing $n$ elements, then the total number of binary operation of $S$ is :
(1) $n^{n}$
(2) $2^{n}$
(3) $n^{2}$
(4) None of these
83. The least values of $\left(\sin ^{-1} x\right)^{2}+\cos ^{-1} x^{2}$ is :
(1) $\pi^{2} / 16$
(2) $\pi^{2} / 8$
(3) $\pi^{2} / 4$
(4) None of these
84. If $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$, the value of $x$ is :
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{3}$
(3) $2 \sqrt{3}$
(4) None of these
85. For any $2 \times 2$ matrix $A$, if $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then $|A|$ is equal to :
(1) 0
(2) 10
(3) 20
(4) None of these
P. T. O.
86. The diagonal elements of a skew-hermitian matrix are :
(1) Equal to one
(2) Real
(3) Purely imaginary or zero
(4) None of these
87. Every real symmetric metric is :
(1) Hermitian
(2) Skew-hermitian
(3) Skew-symmetric
(4) None of these
88. A and B be two square matrices and if their inverse exists than $(A B)^{-1}$ is equal to :
(1) $A^{-1} B^{-1}$
(2) $A B^{-1}$
(3) $A^{-1} B$
(4) $B^{-1} A^{-1}$
89. If the system of equation $x+a y=0, a z+y=0, a x+z=0$ has infinite solutions, than the value of $a$ is :
(1) -1
(2) 1
(3) 0
(4) None of these
90. $A$ and $B$ are square matrices of order 3 each, $|A|=2$ and $|B|=3$, the value of $|3 A B|$ is :
(1) 18
(2) 54
(3) 108
(4) None of these
91. $\lim _{x \rightarrow 1}[x-1]$, where $[$.$] is a greatest integer function, is equal to :$
(1) 1
(2) 2
(3) 0
(4) Does not exist
92. The value of $\lim _{x \rightarrow 5} \frac{e^{x}-e^{5}}{x-5}$ is equal to :
(1) 5
(2) $e$
(3) $e^{5}$
(4) None of these
93. If $f(x)=1-x+x^{2}-x^{3}+\ldots \ldots \ldots-x^{99}+x^{100}$, then the value of $f^{\prime}(1)$ is :
(1) 50
(2) 25
(3) 0
(4) None of these
94. The mean deviation of the data $3,10,10,4,7,10,5$ from the mean is :
(1) 2
(2) 2.57
(3) 3
(4) None of these
95. The standard deviation for first 10 natural numbers is :
(1) 2.87
(2) 2.97
(3) 3.87
(4) None of these
96. The mean of first $n$ terms of an A.P. whose first term is $a$ and common difference $i$ is
(1) $a+(n-1) d$
(2) $a+n d$
(3) $a+(n-1) \frac{d}{2}$
(4) None of these
97. In a leap year the probability of having 53 Sunday or 53 Monday is :
(1) $2 / 7$
(2) $3 / 7$
(3) $4 / 7$
(4) None of these
98. Seven persons are to be seated in a row. The probability that two particular persons next to each other is :
(1) $\frac{1}{3}$
(2) $\frac{1}{6}$
(3) $\frac{2}{7}$
(4) None of these
99. A card is drawn at random from a well shuffled pack of 52 cards. The probability getting a two of heart or a two of diamond is :
(1) $1 / 52$
(2) $3 / 52$
(3) $4 / 52$
(4) $1 / 26$
100. If $R$ is a relation from a set $A$ to a set $B$ and $S$ is a relation from $B$ to a set $C$, then the relation $S o R$ :
(1) is from $A$ to $C$
(2) is from $C$ to $A$
(3) does not exist
(4) None of these

## UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(B)

Time: $11 / 4$ Hours
Roll No. (in figures) $\qquad$ Max. Marks : 100
Total Questions: 100 (in words) $\qquad$ Name $\qquad$ Date of Birth $\qquad$
Father's Name $\qquad$ Mother's Name
Date of Examination $\qquad$

## CANDIDATES MUST READ THE FOLLOWING INFORMATIONIINSTRUCTIONS BEFORE

 STARTING THE QUESTION PAPER.1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the $A, B, C \& D$ code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer.in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)
9. The minimum value of the expression $3^{x}+3^{1-x}, x \in R$ is given by :
(1) $\geq 2 \sqrt{3}$
(2) $\leq 2 \sqrt{3}$
(3) $4 \sqrt{3}$
(4) None of these
10. If the vertices of a triangle are $(-4,6),(2,-2)$ and $(2,5)$, then its centroid is :
(1) $(3,0)$
(2) $(-3,0)$
(3) $(0,-3)$
(4) $(0,3)$
11. The distance between the lines $5 x+3 y-7=0$ and $15 x+9 y+14=0$ is :
(1) $\frac{35}{\sqrt{34}}$
(2) $\frac{1}{3 \sqrt{34}}$
(3) $\frac{35}{3 \sqrt{34}}$
(4) None of these
12. If the lines $a x+2 y+1=0, b x+3 y+1=0$ and $c x+4 y+1=0$ are concurrent, then relation between $a, b, c$ is given by :
(1) $a+b=c$
(2) $a+c=2 b$
(3) $a+c=b$
(4) None of these
13. The line which cuts off equal intercept from the axes and pass through the point $(1,-2)$
(1) $x+y+1=0$
(2) $x-y+5=0$
(3) $x+3 y=0$
(4) None of these

## UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)

P. T. O.
6. The equation of eirele which touches the $y$-axis at origin and whose radius is 3 units.
(1) $x^{2}+y^{2}=9$
(2) $x^{2}+y^{2}=0$
(3) $x^{2}+y^{2} \pm 6 x=0$
(4) None of these
7. If the focus of a parabola is $(-2,1)$ and the directrix has the equation $x+y=3$, then its vertex:
(1) $(0,3)$
(2) $(-1,1 / 2)$
(3) $(2,-1)$
(4) $(-1,2)$
8. Equation of the hyperbola whose vertices are $( \pm 3,0)$ and foci at $( \pm 5,0)$ is :
(1) $9 x^{2}-16 y^{2}=144$
(2) $16 x^{2}-9 y^{2}=144$
(3) $25 x^{2}-9 y^{2}=225$
(4) None of these
9. The length of the perpendicular drawn from the point $P(a, b, c)$ on $z$-axis is :
(1) $\sqrt{a^{2}+b^{2}}$
(2) $\sqrt{b+c^{2}}$
(3) $\sqrt{a^{2}+c^{2}}$
(4) $\sqrt{a^{2}+b^{2}+c^{2}}$
10. $A$ is the foot of the perpendicular drawn from a point $P(3,4,5)$ on the $x z$-plane. The co-ordinates of point $A$ are :
(1) $(3,0,0)$
(2) $(0,4,5)$
(3) $(3,0,5)$
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)
11. If $\left|\begin{array}{ccc}2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1\end{array}\right|+3=0$, then the value of $x$ is :
(1) 9
(2) 4
(3) 1
(4) -1
12. If $f(x)=x^{2}-3 x+1$ and $f(2 \alpha)=2 f(\alpha)$, then $\alpha$ is equal to :
(1) $\frac{1}{\sqrt{2}}$
(2) $\frac{1}{\sqrt{3}}$
(3) $\frac{1}{\sqrt{5}}$
(4) None of these
13. The range of the function $\sin \left(\sin ^{-1} x+\cos ^{-1} x\right),|x| \leq 1$ is :
(1) $[-1,1]$
(2) $(-1,1)$
(3) $\{0\}$
(4) $\{1\}$
14. The domain of the function $f(x)=\cos ^{-1}[x]$ is :
(1) $(-1,2)$
(2) $(-2,1)$
(3) $[-1,2)$
(4) $[1,2]$
15. If $y=\sin ^{-1} x$ and $z=\cos ^{-1} \sqrt{1-x^{2}}$, then $\frac{d y}{d z}$ is equal to :
(1) $\frac{1}{\sqrt{1-x^{2}}}$
(2) $\cos ^{-1} x$
(3) 1
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)
P. T. O.
16. Derivative of $x^{2 x}$ w.r.t. $x$ is :
(1) $x^{2 x-1}$
(2) $2 x^{2 x} \log x$
(3) $2 x^{2 x}(1-\log x)$
(4) $2 x^{2 x}(1+\log x)$
17. $f(x)=3 x^{3}-x^{2}$, then $f(x)$ is increasing in the interval :
(1) $\left(\frac{1}{3}, \infty\right)$
(2) $\left(-\infty, \frac{1}{3}\right)$
(3) $\left(0, \frac{1}{3}\right)$
(4) None of these
18. If $x+y=8$, then the maximum value of $x y$ is :
(1) 12
(2) 16
(3) 20
(4) None of these
19. The minimum value of $x+\cos x$ in $[0, \pi)$ is :
(1) $\pi$
(2) 1
(3) $\pi / 2$
(4) None of these
20. $\int_{0}^{\pi / 2} \cos ^{6} x d x$ is equal to :
(1) $3 \pi / 32$
(2) $4 \pi / 32$
(3) $5 \pi / 32$
(4) None of these
21. The volume of the parallelopiped whose edges are represented by the vectors $\hat{i}+\hat{j}$, $\hat{j}+\hat{k}$ and $\hat{i}+\hat{k}$ is :
(1) 2
(2) 0
(3) $\sqrt{2}$
(4) None of these
22. The value of $\mid \vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}]$ where $|\vec{a}|=1,|\vec{b}|=2$ and $|\vec{c}|=3$ is:
(1) 6
(2) 3
(3) l
(4) 0
23. The minimum value of $P=6 x+16 y$ subject to constraints $x \leq 40, y \geq 20$ and $x, y \geq 0$ :
(1) 240
(2) 320
(3) 560
(4) None of these
24. Let $z=p x+q y$, where $p, q>0$ be the objective function. Find the condition on $p$ and $q$ so that the maximum value of $z$ occurs at $B(10,14)$ and $C(12,12)$ :
(1) $p>q$
(2) $p=q$
(3) $p<q$
(4) None of these
25. Which of the terms is not used in a linear programming problem?
(1) Slack variables
(2) Objective function
(3) Concave region
(4) Feasible region

4 1
26. The maximum value of $P=8 x+3 y$ subject to the constraints $x+y \leq 3,4 x+y \leq 6$, $x \geq 0, y \geq 0$ is :
(1) 6
(2) 12
(3) 14
(4) None of these
27. The co-ordinates of foot of perpendicular drawn from point $(1,3,9)$ on $x$-axis are :
(1) $(1,0,0)$
(2) $(0,3,0)$
(3) $(0,3,9)$
(4) $(0,0,9)$
28. The points $(1,1,0),(0,1,1),(1,0,1)$ and $\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ are :
(1) Non-coplanar
(2) Co-planar
(3). The vertices of a parallelogram
(4) None of these
29. The ratio in which the line joining $(2,4,5),(3,5,-4)$ is divided by the $y z$-plane is :
(1) $2: 3$
(2) $3: 2$
(3) $4:-3$
(4) $-2: 3$
30. The direction ratio of a normal to the plane through $(1,0, \theta),(0,1,0)$, which makes an angle of $\pi / 4$ with the plane $x+y=3$ are :
(1) $\langle\sqrt{2}, 1,1\rangle$
(2) $\langle 1, \sqrt{2}, 1\rangle$
(3) $(1,1, \sqrt{2})$
(4) $\langle 1,1,2\rangle$

## UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)

31. The slope at any point of a curve $y=f(x)$ is given by $\frac{d y}{d x}=3 x^{2}$ and it passes through $(-1,1)$. The equation of the curve is :
(1) $x^{3}+2$
(2) $-x^{3}-2$
(3) $3 x^{3}+4$
(4) None of these
32. The order of differential equation whose solution is $y=A \cos x+B \sin x+C e^{-x}$ is :
(1) 1
(2) 2
(3) 3
(4) None of these
33. The probability of having at least one tail in 4 throws with a coin is :
(1) $\frac{1}{16}$
(2) $\frac{15}{16}$
(3) 1
(4) None of these
34. If for any two events $A$ and $B, P(A)=\frac{4}{5}$ and $P(A \cap B)=\frac{7}{10}$, then $P(B / A)$ is equal to :
(1) $\frac{1}{10}$
(2) $\frac{1}{8}$
(3) $\frac{7}{8}$
(4) None of these
35. If three dice are thrown simultaneously, then the probability of getting a score of 5 is :
(1) $1 / 6$
(2) $1 / 72$
(3) $5 / 216$
(4) $1 / 36$
36. Three vertices out of six of a hexagon are chosen at random. The probability that the triangle is equilateral triangle is :
(1) $1 / 10$
(2) $2 / 5$
(3) $3 / 2$
(4) $4 / 5$
37. The probability that a man will live 10 more years is $1 / 4$ and the probability that his wife will live 10 more years is $1 / 3$. Then the probability that neither will be alive in 10 years is :
(1) $5 / 12$
(2) $1 / 2$
(3) $7 / 12$
(4) $11 / 12$
38. If $|\vec{a} \times \vec{b}|=|\vec{a} \cdot \vec{b}|$, then the angle between $\vec{a}$ and $\vec{b}$ is :
(1) $\pi / 2$
(2) $\pi / 4$
(3) $2 \pi / 3$
(4) None of these
39. Let $\vec{a}$ and $\vec{b}$ be the two unit vectors such that angle between them is $60^{\circ}$, then $|\vec{a}-\vec{b}|$ is equal to :
(1) $\sqrt{5}$
(2) $\sqrt{3}$
(3) 0
(4) 1
40. Which of the following is a true statement?
(1) $(\vec{a} \times \vec{b}) \times \vec{c}$ is coplanar with $\vec{c}$
(2) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{a}$
(3) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{b}$
(4) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{c}$.

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)
41. If $x$ and $b$ are real number, $b>0$ and $|x|>b$, then :
(1) $x \in(-b, \infty)$
(2) $x \in(-\infty, b)$
(3) $x \in(-b, b)$
(4) $x \in(-\infty,-b) \cup(b, \infty)$
42. Which of the points lies in the half-plane $\frac{x}{2}+\frac{y}{3}-1 \geq 0$ ?
(1) $(0,1)$
(2) $(1,5)^{\text {. }}$
(3) $(-3,-4)$
(4) None of these
43. The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is :
(1) 1440
(2) 144
(3) $7!$
(4) None of these
44. If ${ }^{n} P_{r}=840,{ }^{n} C_{r}=35$, find the value of $r$ :
(1) 8
(2) 6
(3) 4
(4) None of these
45. In how many ways can 5 boys and 5 girls be seated at a round table, so that no two girls are seated together?
(1) 2880
(2) 2680
(3) 1860
(4) None of these
46. Find the middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$ :
(1) 252
(2) $250 x^{2}$
(3) $248 x^{-2}$
(4) None of these
47. Find the co-efficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$ :
(1) 890
(2) 990
(3) 690
(4) None of these
48. The first and last term of an A.P. are 1 and 11. If the sum of its terms is 36 , then the number of terms will be :
(1) 8
(2) 7
(3) 6
(4) None of these
49. Which term of the sequence $8-6 i, 7-4 i, 6-2 i$, $\qquad$ is purely imaginary?
(1) 4
(2) 7
(3) 9
(4) None of these
50. The third term of G.P. is 4 . The product of its first five term is :
(1) $4^{2}$
(2) $4^{3}$
(3) $4^{4}$
(4) $4^{5}$

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)
51. $\lim _{x \rightarrow 1}[x-1]$, where $[$.$] is a greatest integer function, is equal to :$
(1) 1
(2) 2
(3) 0
(4) Does not exist
52. The value of $\lim _{x \rightarrow 5} \frac{e^{x}-e^{5}}{x-5}$ is equal to:
(1) 5
(3) $e^{5}$
(2) $e$
(4) None of these
53. If $f(x)=1-x+x^{2}-x^{3}+\ldots \ldots \ldots .-x^{99}+x^{100}$, then the value of $f^{\prime}(1)$ is :
(1) 50
(2) 25
(3) 0
(4) None of these
54. The mean deviation of the data $3,10,10,4,7,10,5$ from the mean is :
(1) 2
(2) 2.57
(3) 3
(4) None of these
55. The standard deviation for first 10 natural numbers is :
(1) 2.87
(2) 2.97
(3) 3.87
(4) None of these
56. The mean of first $n$ terms of an A.P. whose first term is $a$ and common difference is $d$.
(1) $a+(n-1) d$
(2) $a+n d$
(3) $a+(n-1) \frac{d}{2}$
(4) None of these
57. In a leap year the probability of having 53 Sunday or 53 Monday is :
(1) $2 / 7$
(2) $3 / 7$
(3) $4 / 7$
(4) None of these
58. Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is :
(1) $\frac{1}{3}$
(2) $\frac{1}{6}$
(3) $\frac{2}{7}$
(4) None of these
59. A card is drawn at random from a well shuffled pack of 52 cards. The probability of getting a two of heart or a two of diamond is :
(1) $1 / 52$
(2) $3 / 52$
(3) $4 / 52$
(4) $1 / 26$
60. If $R$ is a relation from a set $A$ to a set $B$ and $S$ is a relation from $B$ to a set $C$, then the relation $S o R$ :
(1) is from $A$ to $C$
(2) is from $C$ to $A$
(3) does not exist
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)
61. Which of the following sets is an empty set?
(1) The set having zero as its only element
(2) $\{x: x+3=3\}$
(3) $\left\{y: y^{3}=27, y=2\right\}$
(4) None of these
62. If $A$ and $B$ are two disjoint sets, then $n(A \cup B)$ is equal to :
(1) $n(A)+n(B)$
(2) $n(A)+n(B)-n(A \cap B)$
(3) $n(A)+n(B)+n(A \cap B)$
(4) $n(A) \cdot n(B)$
63. If $n$ elements are common to A and B , then number of elements common in $A \times B$ and $B \times A$ is :
(1) $n$
(2) $2 n$
(3) $n^{3}$.
(4) $\dot{n}^{2}$
64. The function $f: R \rightarrow R$ is defined by $f(x)=\cos ^{2} x+\sin ^{4} x$ then $f(R)$ equals :
(1) $\left[\frac{3}{4}, 1\right)$
(2) $(3 / 4,1]$
(3) $\left[\frac{3}{4}, 1\right]$
(4) $\left(\frac{3}{4}, 1\right)$
65. If $\tan x=a / b$, then $b \cdot \cos 2 x+a \sin 2 x$ is equal to :
(1) $a$
(2) $b$
(3) $a / b$
(4) $b / a$

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C) P.T. O.
66. If $x$ is an acute angle and $\tan x=1 / \sqrt{7}$, then the value of $\frac{\operatorname{cosec}^{2} x-\sec ^{2} x}{\operatorname{cosec}^{2} x+\sec ^{2} x}$ is :
(1) $3 / 4$
(2) $1 / 2$
(3) 2
(4) $5 / 4$
67. The trigonometric function $\cos x$ is increasing in quadrant :
(1) I-and II
(2) II and III
(3) III and IV
(4) I and IV
68. The complex number, which when multiplied by $2+5 i$ gives $3-7 i$, is :
(1) $-1+i$
(2) $-1-i$
(3) $1-i$
(4) $1+i$
69. The value of $\sin 30^{\circ}+\cos 30^{\circ}$ in polar form :
(1) $\cos \pi / 6+i \sin \pi / 6$
(2) $\cos \pi / 6-i \sin \pi / 6$
(3) $\cos \pi / 3-i \sin \pi / 3$
(4) None of these
70. Solution of the quadratic equation $x^{2}-7 i x-12=0$ are :
(1) $3 i, 4 i$
(2) $-3 i, 4 i$
(3) $-3 i,-4 i$
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)
71. Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from $A$ to $B$ is :
(1) 144
(2) 12
(3) 24
(4) None of these
72. Let $S$ be a finite set containing $n$ elements, then the total number of binary operation of $S$ is :
(1) $n^{n}$
(2) $2^{n}$
(3) $n^{2}$
(4) None of these
73. The least values of $\left(\sin ^{-1} x\right)^{2}+\cos ^{-1} x^{2}$ is :
(1) $\pi^{2} / 16$
(2) $\pi^{2} / 8$
(3) $\pi^{2} / 4$
(4) None of these
74. If $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$, the value of $x$ is :
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{3}$
(3) $2 \sqrt{3}$
(4) None of these
75. For any $2 \times 2$ matrix $A$, if $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then $|A|$ is equal to :
(1) 0
(2) 10
(3) 20
(4) None of these
P. T. O.
76. The diagonal elements of a skew-hermitian matrix are :
(1) Equal to one
(2) Real
(3) Purely imaginary or zero
(4) None of these
77. Every real symmetric metric is :
(1) Hermitian
(2) Skew-hermitian
(3) Skew-symmetric
(4) None of these
78. A and B be two square matrices and if their inverse exists than $(A B)^{-1}$ is equal to :
(1) $A^{-1} B^{-1}$
(2) $A B^{-1}$
(3) $A^{-1} B$
(4) $B^{-1} A^{-1}$
79. If the system of equation $x+a y=0, a z+y=0, a x+z=0$ has infinite solutions, than the value of $a$ is :
(1) -1
(2) 1
(3) 0
(4) None of these
80. $A$ and $B$ are square matrices of order 3 each, $|A|=2$ and $|B|=3$, the value of $|3 A B|$ is :
(1) 18
(2) 54
(3) 108
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)
81. The centre of sphere passing through four points $(0,0,0),(0,2,0),(1,0,0)$ and $(0,0,4)$ is :
(1) $\left(\frac{1}{2}, 1,2\right)$
(2) $\left(-\frac{1}{2}, 1,2\right)$
(3) $\left(\frac{1}{2}, 1,-2\right)$
(4) $\left(1, \frac{1}{2}, 2\right)$
82. The point equidistant from the points $(0,0,0),(1,0,0),(0,2,0)$ and $(0,0,3)$ is :
(1) $(1,2,3)$
(2) $\left(\frac{1}{2}, 1,3 / 2\right)$
(3) $\left(-\frac{1}{2},-1,-3 / 2\right)$
(4) None of these
83. If $\int f(x) d x=g(x)$, then $\int f(x) g(x) d x$ is equal to :
(1) $\log g(x)$
(2) $\frac{1}{2}(g(x))^{2}$
(3) $\frac{1}{2}(f(x))^{2}$
(4) None of these
84. $\int_{-2}^{2}[x] d x$ is equal to :
(1) 2
(2) 0
(3) -2
(4) None of these
85. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$ is equal to :
(1) $\frac{1}{6}$
(2) 0
(3) $-\frac{1}{3}$
(4) $-1 / 6$
86. Every continuous function is :
(1) Increasing
(2) Decreasing
(3) Differentiable
(4) Not differentiable
87. In order that the function $f(x)=(x+1)^{\cot x}$ is continuous at $x=0, f(0)$ must be defined as :
(1) $f(0)=0$
(2) $f(0)=1 / e$
(3) $f(0)=e$
(4) None of these
88. Area of the quadrilateral whose vertices are $(2,3),(3,4),(4,5),(5,6)$ is :
(1) 0
(2) 4
(3) 6
(4) None of these
89. If $A$ and $B$ are symmetric matrices of order $n(A \neq B)$, then :
(1) $A+B$ is a zero matrix
(2) $(A+B)$ is a diagonal matrix
(3) $A+B$ is a skew-symmetric
(4) $A+B$ is symmetric
90. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$, then $A^{2}$ is equal to :
(1) $-A$
(2) $A$
(3) Null matrix
(4) Unit matrix
91. $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$ is equal to :
(1) $\pi^{2} / 4$
(2) $\pi^{2} / 32$
(3) 1
(4) None of these
92. $\int_{0}^{\pi} \cos ^{101} x d x$ is equal to :
(1) $\pi / 4$
(2) $1 / 102$
(3) $(\pi / 3)^{101}$
(4) 0
93. $\int_{0}^{\frac{1}{2}}|\sin \pi x| d x$ is equal to :
(1) 0
(2) $\pi$
(3) $-\pi$
(4) $1 / \pi$
94. The value of $\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x$ is :
(1) $e^{x} f(x)+c$
(2) $e^{x}+f(x)+c$
(3) $2 e^{x} f(x)+c$
(4) None of these
95. The area of region bounded by curve $x+2 y+3$, lines $y=1, y=-1$ and $y$-axis is:
(1) 4 square units
(2) $3 / 2$ square units
(3) 6 square units
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)
P. T. O.
96. If $\int_{0}^{a} \frac{d x}{1+4 x^{2}}=\pi / 8$, then value of $a$ is :
(1) $1 / 2$
(2) $1 / 4$
(3) $1 / 8$
(4) None of these
97. The value of $\int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x$ is :
(1) $\pi / 4$
(2) $\pi / 2$
(3) 0
(4) None of these
98. The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{x}$ is :
(1) $x / e^{x}$
(2) $e^{x} / x$
(3) $x e^{x}$
(4) None of these
99. The sum of the order and degree of the differential equation $1+\left(\frac{d y}{d x}\right)^{4}=7\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$ is :
(1) 7
(2) 5
(3) 3
(4) None of these
100. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is :
(1) $e^{x+y}+c=0$
(2) $e^{x}+e^{y}=c$
(3) $e^{x}+e^{-y}=c$
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(C)

## (DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU <br>  ARE ASKED TO DO SO)

Sr. No.

Time: $11 / 4$ Hours
Roll No. (in figures) $\qquad$ Max. Marks: 100

Total Questions

Name $\qquad$ Date of Birth $\qquad$
Father's Name $\qquad$ Mother's Name

Date of Examination $\qquad$
(Signature of the Candidate)
(Signature of the Invigilator)

## CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

## 1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(D)
9. The centre of sphere passing through four points $(0,0,0),(0,2,0),(1,0,0)$ and $(0,0,4)$ is :
(1) $\left(\frac{1}{2}, 1,2\right)$
(2) $\left(-\frac{1}{2}, 1,2\right)$
(3) $\left(\frac{1}{2}, 1,-2\right)$
(4) $\left(1, \frac{1}{2}, 2\right)$
10. The point equidistant from the points $(0,0,0),(1,0,0),(0,2,0)$ and $(0,0,3)$ is :
(1) $(1,2,3)$
(2) $\left(\frac{1}{2}, 1,3 / 2\right)$
(3) $\left(-\frac{1}{2},-1,-3 / 2\right)$
(4) None of these
11. If $\int f(x) d x=g(x)$, then $\int f(x) g(x) d x$ is equal to :
(1) $\log g(x)$
(2) $\frac{1}{2}(g(x))^{2}$
(3) $\frac{1}{2}(f(x))^{2}$
(4) None of these
12. $\int_{-2}^{2}[x] d x$ is equal to :
(1) 2
(2) 0
(3) -2
(4) None of these
13. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$ is equal to :
(1) $\frac{1}{6}$
(2) 0
(3) $-\frac{1}{3}$
(4) $-1 / 6$
14. Every continuous function is :
(1) Increasing
(2) Decreasing
(3) Differentiable
(4) Not differentiable
15. In order that the function $f(x)=(x+1)^{\cot x}$ is continuous at $x=0, f(0)$ must be defined
as :
(1) $f(0)=0$
(2) $f(0)=1 / e$
(3) $f(0)=e$
(4) None of these
16. Area of the quadrilateral whose vertices are $(2,3),(3,4),(4,5),(5,6)$ is :
(1) 0
(2) 4
(3) 6
(4) None of these
17. If $A$ and $B$ are symmetric matrices of order $n(A \neq B)$, then :
(1) $A+B$ is a zero matrix
(2) $(A+B)$ is a diagonal matrix
(3) $A+B$ is a skew-symmetric
(4) $A+B$ is symmetric
18. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$, then $A^{2}$ is equal to :
(1) $-A$
(2) $A$
(3) Null matrix
(4) Unit matrix

## UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(D)

D
11. $\lim _{x \rightarrow 1}[x-1]$, where |.] is a greatest integer function, is equal to
(1) 1
(2) 2
(3) 0
(4) Does not exist
12. The value of $\lim _{x \rightarrow 5} \frac{e^{x}-e^{5}}{x-5}$ is equal to :
(1) 5
(2) $e$
(3) $e^{5}$
(4) None of these
13. If $f(x)=1-x+x^{2}-x^{3}+\ldots \ldots \ldots . .-x^{99}+x^{100}$, then the value of $f^{\prime}(1)$ is :
(1) 50
(2) 25
(3) 0
(4) None of these
14. The mean deviation of the data $3,10,10,4,7,10,5$ from the mean is :
(1) 2
(2) 2.57
(3) 3
(4) None of these
15. The standard deviation for first 10 natural numbers is :
(1) 2.87
(2) 2.97
(3) 3.87
(4) None of these
16. The mean of lirst $n$ terms of an A.P. whose first term is $a$ and common difference is $d$.
(1) $a+(n-1) d$
(2) $a+n d$
(3) $a+(n-1) \frac{d}{2}$
(4) None of these
17. In a leap year the probability of having 53 Sunday or 53 Monday is :
(1) $2 / 7$
(2) $3 / 7$
(3) $4 / 7$
(4) None of these
18. Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is :
(1) $\frac{1}{3}$
(2) $\frac{1}{6}$
(3) $\frac{2}{7}$
(4) None of these
19. A card is drawn at random from a well shuffled pack of 52 cards. The probability of getting a two of heart or a two of diamond is :
(1) $1 / 52$
(2) $3 / 52$
(3) $4 / 52$
(4) $1 / 26$
20. If $R$ is a relation from a set $A$ to a set $B$ and $S$ is a relation from $B$ to a set $C$, then the relation $S o R$ :
(1) is from $A$ to $C$
(2) is from $C$ to $A$
(3) does not exist
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(D)
21. The slope at any point of a curve $y=f(x)$ is given by $\frac{d y}{d x}=3 x^{2}$ and it passes through $(-1,1)$. The equation of the curve is :
(1) $x^{3}+2$
(2) $-x^{3}-2$
(3) $3 x^{3}+4$
(4) None of these
22. The order of differential equation whose solution is $y=A \cos x+B \sin x+C e^{-x}$ is :
(1) 1
(2) 2
(3) 3
(4) None of these
23. The probability of having at least one tail in 4 throws with a coin is :
(1) $\frac{1}{16}$
(2) $\frac{15}{16}$
(3) 1
(4) None of these
24. If for any two events $A$ and $B, P(A)=\frac{4}{5}$ and $P(A \cap B)=\frac{7}{10}$, then $P(B / A)$ is equal to :
(1) $\frac{1}{10}$
(2) $\frac{1}{8}$
(3) $\frac{7}{8}$
(4) None of these
25. If three dice are thrown simultaneously, then the probability of getting a score of 5 is :
(1) $1 / 6$
(2) $1 / 72$
(3) $5 / 216$
(4) $1 / 36$
26. Three vertices out of six of a hexagon are chosen at random. The probability that the triangle is equilateral triangle is :
(1) $1 / 10$
(2) $2 / 5$
(3) $3 / 2$
(4) $4 / 5$
27. The probability that a man will live 10 more years is $1 / 4$ and the probability that his wife will live 10 more years is $1 / 3$. Then the probability that neither will be alive in 10 years is :
(1) $5 / 12$
(2) $1 / 2$
(3) $7 / 12$
(4) $11 / 12$
28. If $|\vec{a} \times \vec{b}|=|\vec{a} \cdot \vec{b}|$, then the angle between $\vec{a}$ and $\vec{b}$ is :
(1) $\pi / 2$
(2) $\pi / 4$
(3) $2 \pi / 3$
(4) None of these
29. Let $\vec{a}$ and $\vec{b}$ be the two unit vectors such that angle between them is $60^{\circ}$, then $|\vec{a}-\vec{b}|$ is equal to :
(1) $\sqrt{5}$
(2) $\sqrt{3}$
(3) 0
(4) 1
30. Which of the following is a true statement?
(1) $(\vec{a} \times \vec{b}) \times \vec{c}$ is coplanar with $\vec{c}$
(2) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{a}$
(3) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{b}$
(4) $(\vec{a} \times \vec{b}) \times \vec{c}$ is perpendicular to $\vec{c}$
31. The minimum value of the expression $3^{x}+3^{\prime} x, x \in R$ is given by
(1) $\geq 2 \sqrt{3}$
(2) $\leq 2 \sqrt{3}$
(3) $4 \sqrt{3}$
(4) None of these
32. If the vertices of a triangle are $(-4,6),(2,-2)$ and $(2,5)$, then its centroid is :
(1) $(3,0)$
(2) $(-3,0)$
(3) $(0,-3)$
(4) $(0,3)$
33. The distance between the lines $5 x+3 y-7=0$ and $15 x+9 y+14=0$ is :
(1) $\frac{35}{\sqrt{34}}$
(2) $\frac{1}{3 \sqrt{34}}$
(3) $\frac{35}{3 \sqrt{34}}$
(4) None of these
34. If the lines $a x+2 y+1=0, b x+3 y+1=0$ and $c x+4 y+1=0$ are concurrent, then relation between $a, b, c$ is given by :
(1) $a+b=c$
(2) $a+c=2 b$
(3) $a+c=b$
(4) None of these
35. The line which cuts off equal intercept from the axes and pass through the point (1, -2) is :
(1) $x+y+1=0$
(2) $x-y+5=0$
(3) $x+3 y=0$
(4) None of these
36. The equation of circle which touches the $y$-axis at origin and whose radius is 3 units.
(1) $x^{2}+y^{2}=9$
(2) $x^{2}+y^{2}=0$
(3) $x^{2}+y^{2} \pm 6 x=0$
(4) None of these
37. If the focus of a parabola is $(-2,1)$ and the directrix has the equation $x+y=3$, then its vertex :
(1) $(0,3)$
(2) $(-1,1 / 2)$
(3) $(2,-1)$
(4) $(-1,2)$
38. Equation of the hyperbola whose vertices are $( \pm 3,0)$ and foci at $( \pm 5,0)$ is :
(1) $9 x^{2}-16 y^{2}=144$
(2) $16 x^{2}-9 y^{2}=144$
(3) $25 x^{2}-9 y^{2}=225$
(4) None of these
39. The length of the perpendicular drawn from the point $P(a, b, c)$ on $z$-axis is :
(1) $\sqrt{a^{2}+b^{2}}$
(2) $\sqrt{b+c^{2}}$
(3) $\sqrt{a^{2}+c^{2}}$
(4) $\sqrt{a^{2}+b^{2}+c^{2}}$
40. $A$ is the foot of the perpendicular drawn from a point $P(3,4,5)$ on the $x z$-plane. The co-ordinates of point $A$ are :
(1) $(3,0,0)$
(2) $(0,4,5)$
(3) $(3,0,5)$
(4) None of these

## UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(D)

D
41. $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$ is cqual to :
(1) $\pi^{2} / 4$
(2) $\pi^{2} / 32$
(3) 1
(4) None of these
42. $\int_{0}^{\pi} \cos ^{101} x d x$ is cqual to :
(1) $\pi / 4$
(2) $1 / 102$
(3) $(\pi / 3)^{101}$
(4) 0
43.
$\int_{0}^{1 / 2} \sin \pi x \mid d x$ is equal to :
(1) 0
(2) $\pi$
(3) $-\pi$
(4) $1 / \pi$
44. The value of $\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x$ is :
(1) $e^{x} f(x)+c$
(2) $e^{x}+f(x)+c$
(3) $2 e^{x} f(x)+c$
(4) None of these
45. The area of region bounded by curve $x+2 y+3$, lines $y=1, y=-1$ and $y$-axis is :
(1) 4 square units
(2) $3 / 2$ square units
(3) 6 square units
(4) None of these
46. If $\int_{0}^{a} \frac{d x}{1+4 x^{2}}=\pi / 8$. then value of $a$ is :
(1) $1 / 2$
(2) $1 / 4$
(3) $1 / 8$
(4) None of these
47. The value of $\int_{\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x$ is :
(1) $\pi / 4$
(2) $\pi / 2$
(3) 0
(4) None of these
48. The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{x}$ is :
(1) $x / e^{x}$
(2) $e^{x} / x$
(3) $x e^{x}$
(4) None of these
49. The sum of the order and degree of the differential equation $1+\left(\frac{d y}{d x}\right)^{4}=7\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$ is :
(1) 7
(2) 5
(3) 3
(4) None of these
50. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is :
(1) $e^{x+y}+c=0$
(2) $e^{x}+e^{y}=c$
(3) $e^{x}+e^{-y}=c$
(4) None of these

UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(D)
51. The volume of the parallelopiped whose edges are represented by the vectors $\hat{i}+\hat{j}$, $\hat{j}+\hat{k}$ and $\hat{i}+\hat{k}$ is :
(1) 2
(2) 0
(3) $\sqrt{2}$
(4) None of these
52. The value of $|\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}|$ where $|\vec{a}|=1,|\vec{b}|=2$ and $|\vec{c}|=3$ is :
(1) 6
(2) 3
(3) 1
(4) 0
53. The minimum value of $P=6 x+16 y$ subject to constraints $x \leq 40, y \geq 20$ and $x, y \geq 0$ :
(1) 240
(2) 320
(3) 560
(4) None of these
54. Let $z=p x+q y$, where $p, q>0$ be the objective function. Find the condition on $p$ and $q$ so that the maximum value of $z$ occurs at $B(10,14)$ and $C(12,12)$ :
(1) $p>q$
(2) $p=q$
(3) $p<q$
(4) None of these
55. Which of the terms is not used in a linear programming problem?
(1) Slack variables
(2) Objective function
(3) Concave region
(4) Feasible region
56. The maximum value of $P=8 x+3 y$ subject to the constraints $x+y \leq 3,4 x+y \leq 6$, $x \geq 0, y \geq 0$ is :
(1) 6
(2) 12
(3) 14
(4) None of these
57. The co-ordinates of foot of perpendicular drawn from point $(1,3,9)$ on $x$-axis are :
(1) $(1,0,0)$
(2) $(0,3,0)$
(3) $(0,3,9)$
(4) $(0,0,9)$
58. The points $(1,1,0),(0,1,1),(1,0,1)$ and $\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ are :
(1) Non-coplanar
(2) Co-planar
(3) The vertices of a parallelogram
(4) None of these
59. The ratio in which the line joining $(2,4,5),(3,5,-4)$ is divided by the $y z$-plane is :
(1) $2: 3$
(2) $3: 2$
(3) $4:-3$
(4) $-2: 3$
60. The direction ratio of a normal to the plane through $(1,0,0),(0,1,0)$, which makes an angle of $\pi / 4$ with the plane $x+y=3$ are :
(1) $\langle\sqrt{2}, 1,1\rangle$
(2) $\langle 1, \sqrt{2}, 1\rangle$
(3) $(1,1, \sqrt{2})$
(4) $<1,1,2>$

## UG-EE-June, 2024/(Mathematics-4 Yr.)(SET-Z)/(D)

61. Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from $\Lambda$ to $B$ is
(1) 144
(2) 12
(3) 24
(4) None of these
62. Let $S$ be a finite set containing $n$ elements, then the total number of binary operation of $S$ is :
(1) $n^{n}$
(2) $2^{\prime \prime}$
(3) $n^{2}$
(4) None of these
63. The least values of $\left(\sin ^{-1} x\right)^{2}+\cos ^{-1} x^{2}$ is :
(1) $\pi^{2} / 16$
(2) $\pi^{2} / 8$
(3) $\pi^{2} / 4$
(4) None of these
64. If $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$, the value of $x$ is :
(1) $\frac{1}{\sqrt{3}}$
(2) $\sqrt{3}$
(3) $2 \sqrt{3}$
(4) None of these
65. For any $2 \times 2$ matrix $A$, if $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then $|A|$ is equal to :
(1) 0
(2) 10
(3) 20
(4) None of these
66. The diagonal clements of a skew-hermitian matrix are :
(1) Equal to one
(2) Real
(3) Purely imaginary or zero
(4) None of these
67. Every real symmetric metric is:
(1) Hermitian
(2) Skew-hermitian
(3) Skew-symmetric
(4) None of these
68. A and B be two square matrices and if their inverse exists than $(A B)^{-1}$ is equal to :
(1) $A^{-1} B^{-1}$
(2) $A B^{-1}$
(3) $A^{-1} B$
(4) $B^{-1} A^{-1}$
69. If the system of equation $x+a y=0, a z+y=0, a x+z=0$ has infinite solutions, than the value of $a$ is :
(1) -1
(2) 1
(3) 0
(4) None of these
70. $A$ and $B$ are square matrices of order 3 each, $|A|=2$ and $|B|=3$, the value of $|3 A B|$ is :
(1) 18
(2) 54
(3) 108
(4) None of these
71. If $\left|\begin{array}{lll}2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1\end{array}\right|+3=0$, then the value of $x$ is :
(1) 9
(2) 4
(3) 1
(4) -1
72. If $f(x)=x^{2}-3 x+1$ and $f(2 \alpha)=2 f(\alpha)$, then $\alpha$ is equal to :
(1) $\frac{1}{\sqrt{2}}$
(2) $\frac{1}{\sqrt{3}}$
(3) $\frac{1}{\sqrt{5}}$
(4) None of these
73. The range of the function $\sin \left(\sin ^{-1} x+\cos ^{-1} x\right),|x| \leq 1$ is :
(1) $[-1,1]$
(2) $(-1,1)$
(3) $\{0\}$
(4) $\{1\}$
74. The domain of the function $f(x)=\cos ^{-1}[x]$ is :
(1) $(-1,2)$
(2) $(-2,1)$
(3) $[-1,2)$
(4) $[1,2]$
75. If $y=\sin ^{-1} x$ and $z=\cos ^{-1} \sqrt{1-x^{2}}$, then $\frac{d y}{d z}$ is equal to :
(1) $\frac{1}{\sqrt{1-x^{2}}}$
(2) $\cos ^{-1} x$
(3) 1
(4) None of these
76. Derivative of $x^{2 x}$ w.r.t. $x$ is :
(1) $x^{2 x-1}$
(2) $2 x^{2 x} \log x$
(3) $2 x^{2 x}(1-\log x)$
(4) $2 x^{2 x}(1+\log x)$
77. $f(x)=3 x^{3}-x^{2}$, then $f(x)$ is increasing in the interval :
(1) $\left(\frac{1}{3}, \infty\right)$
(2) $\left(-\infty, \frac{1}{3}\right)$
(3) $\left(0, \frac{1}{3}\right)$
(4) None of these
78. If $x+y=8$, then the maximum value of $x y$ is :
(1) 12
(2) 16
(3) 20
(4) None of these
79. The minimum value of $x+\cos x$ in $[0, \pi)$ is :
(1) $\pi$
(2) 1
(3) $\pi / 2$
(4) None of these
80. $\int_{0}^{\pi / 2} \cos ^{6} x d x$ is equal to :
(1) $3 \pi / 32$
(2) $4 \pi / 32$
(3) $5 \pi / 32$
(4) None of these
81. Which of the following sets is an empty set ?
(1) The set having zero as its only element
(2) $\{x: x+3=3\}$
(3) $\left\{y: y^{3}=27, y=2\right\}$
(4) None of these
82. If $A$ and $B$ are two disjoint sets, then $n(A \cup B)$ is equal to :
(1) $n(A)+n(B)$
(2) $n(A)+n(B)-n(A \cap B)$
(3) $n(A)+n(B)+n(A \cap B)$
(4) $n(A) \cdot n(B)$
83. If $n$ elements are common to A and B , then number of elements common in $A \times B$ and $B \times A$ is :
(1) $n$
(2) $2 n$
(3) $n^{3}$
(4) $n^{2}$
84. The function $f: R \rightarrow R$ is defined by $f(x)=\cos ^{2} x+\sin ^{4} x$ then $f(R)$ equals :
(1) $\left[\frac{3}{4}, 1\right)$
(2) $(3 / 4,1]$
(3) $\left[\frac{3}{4}, 1\right]$
(4) $\left(\frac{3}{4}, 1\right)$
85. If $\tan x=a / b$, then $b \cos 2 x+a \sin 2 x$ is equal to :
(1) $a$
(2) $b$
(3) $a / b$
(4) $b / a$
86. If $x$ is an acute angle and $\tan x=1 / \sqrt{7}$, then the value of $\frac{\operatorname{cosec}^{2} x-\sec ^{2} x}{\operatorname{cosec}^{2} x+\sec ^{2} x}$ is :
(1) $3 / 4$
(2) $1 / 2$
(3) 2
(4) $5 / 4$
87. The trigonometric function $\cos x$ is increasing in quadrant :
(1) I and II
(2) II and III
(3) III and IV
(4) I and IV
88. The complex number, which when multiplied by $2+5 i$ gives $3-7 i$, is :
(1) $-1+i$
(2) $-1-i$
(3) $1-i$
(4) $1+i$
89. The value of $\sin 30^{\circ}+\cos 30^{\circ}$ in polar form :
(1) $\cos \pi / 6+i \sin \pi / 6$
(2) $\cos \pi / 6-i \sin \pi / 6$
(3) $\cos \pi / 3-i \sin \pi / 3$
(4) None of these
90. Solution of the quadratic equation $x^{2}-7 i x-12=0$ are :
(1) $3 i, 4 i$
(2) $-3 i, 4 i$
(3) $-3 i,-4 i$
(4) None of these
91. If $x$ and $b$ are real number, $b>0$ and $|x|>b$, then :
(1) $x \in(-b, \infty)$
(2) $x \in(-\infty, b)$
(3) $x \in(-b, b)$
(4) $x \in(-\infty,-b) \cup(b, \infty)$
92. Which of the points lies in the half-plane $\frac{x}{2}+\frac{y}{3}-1 \geq 0$ ?
(1) $(0,1)$
(2) $(1,5)$
(3) $(-3,-4)$
(4) None of these
93. The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is :
(1) 1440
(2) 144
(3) 7 !
(4) None of these
94. If ${ }^{n} P_{r}=840,{ }^{n} C_{r}=35$, find the value of $r$ :
(1) 8
(2) 6
(3) 4
(4) None of these
95. In how many ways can 5 boys and 5 girls be seated at a round table, so that no two girls are seated together?
(1) 2880
(2) 2680
(3) 1860
(4) None of these
96. Find the middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$ :
(1) 252
(2) $250 x^{2}$
(3) $248 x^{-2}$
(4) None of these
97. Find the co-efficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$ :
(1) 890
(2) 990
(3) 690
(4) None of these
98. The first and last term of an A.P. are 1 and 11 . If the sum of its terms is 36 , then the number of terms will be :
(1) 8
(2) 7
(3) 6
(4) None of these
99. Which term of the sequence $8-6 i, 7-4 i, 6-2 i, \ldots \ldots \ldots$ is purely imaginary ?
(1) 4
(2) 7
(3) 9
(4) None of these
100. The third term of G.P. is 4 . The product of its first five term is :
(1) $4^{2}$
(2) $4^{3}$
(3) $4^{4}$
(4) $4^{5}$

Answer keys of B.Sc. (MATHS) 4-Years entrance exam dated 21.06.2024




